Characterization of a counterpart to Mammalian ornithine decarboxylase antizyme in prokaryotes.

نویسندگان

  • Yoshihiro Yamaguchi
  • Yumiko Takatsuka
  • Senya Matsufuji
  • Yasuko Murakami
  • Yoshiyuki Kamio
چکیده

The degradation of mammalian ornithine decarboxylase (ODC) (EC 4.1.1.17) by 26 S proteasome, is accelerated by the ODC antizyme (AZ), a trigger protein involved in the specific degradation of eukaryotic ODC. In prokaryotes, AZ has not been found. Previously, we found that in Selenomonas ruminantium, a strictly anaerobic and Gram-negative bacterium, a drastic degradation of lysine decarboxylase (LDC; EC 4.1.1.18), which has decarboxylase activities toward both L-lysine and L-ornithine with similar K(m) values, occurs upon entry into the stationary phase of cell growth by protease together with a protein of 22 kDa (P22). Here, we show that P22 is a direct counterpart of eukaryotic AZ by the following evidence. (i) P22 synthesis is induced by putrescine but not cadaverine. (ii) P22 enhances the degradation of both mouse ODC and S. ruminantium LDC by a 26 S proteasome. (iii) S. ruminantium LDC degradation is also enhanced by mouse AZ replacing P22 in a cell-free extract from S. ruminantium. (iv) Both P22 and mouse AZ bind to S. ruminantium LDC but not to the LDC mutated in its binding site for P22 and AZ. In this report, we also show that P22 is a ribosomal protein of S. ruminantium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells.

Antizyme, a spermidine-induced protein that binds and stimulates ornithine decarboxylase degradation, is now shown also to mediate the rapid feedback inhibition of polyamine uptake into mammalian cells. Using a cell line (HZ7) transfected with truncated antizyme cDNA, and mutant ornithine decarboxylase cell lines, we demonstrate that this newly discovered action of antizyme is distinct from its...

متن کامل

Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3.

Previous studies with mice overproducing ornithine decarboxylase have demonstrated the importance of polyamine homeostasis for normal mammalian spermatogenesis. The present study introduces a likely key player in the maintenance of proper polyamine homeostasis during spermatogenesis. Antizyme 3 is a paralog of mammalian ornithine decarboxylase antizymes. Like its previously described counterpar...

متن کامل

Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity.

Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradati...

متن کامل

Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase.

The degradation of ornithine decarboxylase (ODC) catalyzed by the 26 S proteasome is accelerated by antizyme, an ODC inhibitory protein induced by polyamines. Previously, we have found another possible regulatory protein of ODC degradation, antizyme inhibitor. Antizyme inhibitor binds to the antizyme with a higher affinity than that of ODC, releasing ODC from ODC-antizyme complex. We report her...

متن کامل

Regulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cells.

Agmatine, a product of arginine decarboxylation in mammalian cells, is believed to govern cell polyamines by inducing antizyme, which in turn suppresses ornithine decarboxylase (ODC) activity and polyamine uptake. However, since agmatine is structurally similar to the polyamines, it is possible that it exerts antizyme-independent actions on polyamine regulatory pathways. The present study deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 7  شماره 

صفحات  -

تاریخ انتشار 2006